Major Airway Obstruction
Introduction

• Obstruction of major airways can result from a variety of disease processes and is a cause of significant morbidity and mortality

• Increasing no. of pts. with lung cancer develop complications of prox. endobronchial disease
 – 20-30% pts with lung cancer develop complications (Atelectasis, Pneumonia, Dyspnea)
 – Upto 40% lung cancer death may be attributed to loco-regional disease
 – With ↑ use of Artificial airways such as ETT, incidence of iatrogenic complications is also increasing
ETIOLOGY

• Infections:
 Ac. Epiglottitis
 Laryngo tracheo bronchitis
 Ludwig’s Angina
 Ac. Tonsillitis with/without Retropharyngeal abscess
 Bacterial bronchitis
 TB

• Angioedema:
 Exposure to Drugs
 [Narcotics, Aspirin, NSAID, ACE(-)]
 C1 esterase deficiency.
• Tumors:
 Pharynx
 Larynx – Haemangioma
 Ca → Supra glottic regions
 Glottic regions
 Sub-glottic regions
 Trachea & Bronchi
 Adenoid Cystic Ca
 Sq. Cell Ca
 Secondary inv.- Bronchogenic Ca
 Laryngeal, Esophageal.
 Thyroid Malignancies.
• **Trauma:**
 - Facial [Crush Injuries, # Mandible]
 - Laryngeal
 - Tracheobronchial injuries
 - Inhalational Injuries

• **Vascular Causes:**
 - Innominate Artery syndr.
 - Thoracic Aorta aneurysms
 - Double aortic arch

• **Foreign Body Aspiration:**
- **Neuromuscular Disorders:**
 - Myasthenia gravis
 - Motor neuron diseases
- **Iatrogenic Causes:**
 - Vocal cord granuloma
 - Glottic stenosis
 - Vocal cord Paralysis
 - Tracheal Stenosis
• Miscellaneous Causes:
 Collagen vascular diseases
 Relapsing Polychondritis
 RA
 Sjogren’s Syndr.
 Tracheal abnormalities
 Tracheobronchiomegaly
 Saber sheath Trachea
 Tracheobronchopathia
 Osteochondroplastica
• C/F:
 Mild Airflow Obstr → Asymptomatic
 Dyspnea, Noisy breathing [wheeze, stridor]
 Post-obstr Pneumonia, Collapse, U/L wheeze
 Hoarseness of voice
 Exertional dyspnea:
 Tracheal diameter-8mm
 Stridor /Dyspnea at rest:
 Tracheal diameter-5 mm

• Physiological assessment
• Diameter of lumen < 8 mm:
 Produce abnormal flow-volume loops.
 Initial effort dependent portion affected in CAO
<table>
<thead>
<tr>
<th>Type</th>
<th>Example</th>
<th>Flow characteristic</th>
<th>FEF / FIF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable</td>
<td>Vocal Cord palsy</td>
<td>Increased</td>
<td>> 2</td>
</tr>
<tr>
<td>Extra-thoracic</td>
<td>Glottic Stricture</td>
<td>Obstn.during during inspiration resulting ↓ inspiratory flow.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tumors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variable</td>
<td>Malignant tumors,</td>
<td>Forced Expiration</td>
<td>~ 0.3</td>
</tr>
<tr>
<td>Intrathoracic</td>
<td>Tracheomalacia</td>
<td>Increases obstruction</td>
<td></td>
</tr>
<tr>
<td>Fixed Extra</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Or-Intrathoracic</td>
<td>Goitre</td>
<td>Fixed flow with</td>
<td>~ 1</td>
</tr>
<tr>
<td></td>
<td>Post-intubation Stricture</td>
<td>Inspiration and Expiration</td>
<td></td>
</tr>
</tbody>
</table>

- Spirometry should not be done in CAO, Resp. distress → Induce Resp. failure
Radiology:

• **CXR:**
 - Rarely diagnostic
 - Tracheal deviation can be identified

• **CT Scan:**
 - Provide much more information
 - Document dynamic airway collapse
 - Multiplanar/3D reconstruction:
 • Better visualization
 • Whether lesions are intraluminal/Extrinsic to airways/features of both
 • Whether airways distal to obstr. are patent
 • Relationship to other structures such as vessels
• Bronchoscopy: (Rigid/Flexible)
 – Helps in assessing obstr.
 – Direct visualization allows nature and extent of obstr. to be determined
 – Allows tissue diagnosis

• Endobronchial ultrasound
 – Extremely sensitive for determining degree of tracheal invasion
 – Aids in planning therapeutic interventions
 – Study by Herth and Colleagues, EBUS utilized in 1174 of 2446 cases over 3 yrs. period. It was found to guide/change management in 43% and change included selecting proper stent size/guiding tumor debridement/selecting pts. for endoscopic therapy Vs surgery
Securing the Airway

• Unstable pts.: Airway immediately stabilized
 TT: Procedure of choice for stabilizing severe upper airway obstr.
• Distal airway obstr.: ETT, Rigid bronchoscopy
• Rigid Bronchoscopy:
 • Allows passage of various instruments
 • Barrel of scope – Tamponade a bleeding central lesion
• Heliox: Mixture of 60-80% helium, 20-40% O₂
• Can be used as a bridge in pts. With CAO and resp. distress.
• Heliox ↓ Reynolds number resulting in establishment of laminar flow ↓
 • ↓ Driving pressure to achieve a given flow ↓
 • ↓ WOB allowing for more stable intubation either ETT/RB
• **Anesthesia for Airway Obstruction**
• Majority of these pts. are ASA III/IV
• Inducing agent: IV anesthesia or inhalational
 (i) Rapid, smooth induction
 (ii) Less airway irritation
• Stable pts.:
 – Combination of short acting IV anaesthetic agent (Propofol) with midazolam/fentanyl/vecuronium
• Provide effective and safe anaesthesia/amnesia/pain control and muscle relaxation
• Airway fires:
 – Use of flammable anaesthetics
 – High conc. O2 in presence of lasers/electrocautery
 – ETT/stents can ignite with lasers.
• **Therapeutic Approaches**

• **Dilation of airway (Bronchoplasty)**
 - Emergencies: airways dilated with barrel of RB
 - Less urgent cases: sequential dilation with balloons preferred

• **Indication**
 - Airway stenosis following lung Tx and surgical resection of airways
 - Post-intubation tracheal stenosis
 - Malignant airway Obstr
 - Preparation of airways for stent placement, Brachytherapy catheters
FOB → visualize the stenosis

Vascular ‘J’ wire introduced through bronchoscope port & visualized in the lumen

Wire inserted in the stenotic segment

FOB withdrawn over the wire in a manner similar to Seldinger tech.

Pediatric bronchoscope re-introduced adjacent to wire through ETT to check its position

Angioplasty balloon catheter introduced over wire and directed across stenosis with pediatric scope

Balloon inflated 5-7 times to 4 atm. pressure under direct visualization for approx. 30 sec.

Balloon fully deflated, withdrawn and then 5mm diameter adult size bronchoscope passed to assess for bleeding/airway trauma
Complication:
- Mucosal trauma \rightarrow Granulation \rightarrow Restenosis
 (prevented with laser/stent placement)
- Pneumothorax
- Pneumomediastinum
- Mediastinitis
- Bleeding

\[\text{Less common}\]
ENDO BRONCHIAL LASER THERAPY

Physics: Light Amplified by the stimulated Emission of Radiation [Laser]

LASER is effective because

1. Monochromatic: Narrow band of wavelength
2. Spatial Coherence: minimal divergence, Maintains Intensity
3. Temporal Coherence: Energy packets travel in uniform time with equal alignment.

Amount of Energy delivered to a lesion depend on

1. Power setting of laser (watts)
2. Distance of laser tip to target
3. Duration of impact
Two most commonly applied material used for Laser:

- CO₂ Laser

Mech. Of Action:
- Laser absorbed by tissues
- Water temperature in tissues raised to 100°C
- Vaporization
- Cell Shrinkage and death.
Indications:
Benign/Malignant Airway Lesions associated with
• Dyspnea
• Cough (Uncontrolled)
• Impending Asphyxiation
• Stridor
• Post-obstructive pneumonia
• Unresolving atelectasis
• Nearly complete (> 50%) obstn. Of one major bronchus
• Recurrent haemoptysis
CONTRA-INDICATIONS:

Anatomic
- Extrinsic obstr. Without endobronchial lesion
- Lesion incursion into bordering major vascular structure with potential for fistula formation
- Lesion incursion into bordering Esophagus/mediastinum with potential for fistula formation

Clinical
- Candidate for surgical resection
- Unfavorable short term prognosis with hope for palliation of symptoms.
- Inability to undergo conscious sedation/GA
- Coagulation disorder
- Total obstr. > 4-6 wks.
Equipment:
- CO₂ Laser – Extensive equipment [Articulating arms series of mirrors]
 Used for lesion of larynx
- Nd-YAG Laser can be delivered by flexible cable
- Flexible/Rigid Bronchoscope may be used

Complications:
Malfunction of equipment
- Light Scatter – Retinal damage [Keep the Laser in Stand by mode when not inserted through scope]
- Cable Breakage
Anaesthesia:

- Anoxia- Compromised ventilation due to FOB/Haemorrhage or Debris
- Endotracheal fire: Use of combustible anaesthetic gases (Halothane)
 Supplemental O₂
 Pigmented ETT
- Avoided by: Lower FiO₂, Clear ETT, Rigid Scope
• Peri-Operative:
 – Cardiovascular- Arrhythmia: SVT 5%
 – Hypotension 10%
 – Perforation of Underlying/Contiguous structure
 • Haemorrhage
 • Pneumothorax
 • Pneumomediastinum
Personne et al (J Thorac Cardiovasc Surg, 1986)

- 2284 endoscopic laser resections for tracheo bronchial lesion in 1310 pts.
- **Indications:**
 - Malignant tumors (>50%)
 - Benign lesions: 40% (73% – Stenosis, 27% granulomas)
- **Results:**
 - >50% had remission of significant airway obstr. for atleast 6mths.
 - 25% free of airway obstr. for atleast 1yr.
- **Complications:**
 - Pneumothorax 1%
 - Haemorrhage resulting in death 3pts.

 (Involvement of major vessels like pul.artery/innominate artery)

- 351 Nd-YAG Laser resection performed in 273 pts. With lung cancer
 - Trachea - 64pts.
 - Main bronchi – 154 pts.
 - Bronchus intermedius/distal airway – 55 pts.
- Median survival was 12.1 mths.
- Airway caliber improved in 89% pts.
 Improvement in FEV$_1$/PaO$_2$/performance status
- Major complications
 - Bleeding – 7 pts.
 - Hypoxia – 5 pts.
CRYOTHERAPY

- Scientific Basis
- Necessary temperature for tissue destruction is -15 to -40°C
- Other Factors - (i) Rapid freezing and slow thawing – Max. cell death
 (ii) Repeat cycling - ↑ Destruction
 (iii) Mass of tissue frozen – Large contact area with probe ↑ tissue mass exposed to freezing
- Cellular mechanisms:
 1. Formation of Extra-cellular ice crystals
 - Increased Extra-cellular toxicity
 - Increased Intra-cellular toxicity (d/t water shift)
 - Cell shrinkage
 - Membrane damage
2. Intra-cellular ice crystals damage organelles – Mitochondria, Endoplasmic reticulum
3. Change in intracellular pH- Protein/Enzyme damage
4. Freezing – Vasconstriction
 Micro-thrombi Formation \[\text{Devascularization- Cell Death}\]
<table>
<thead>
<tr>
<th>Cryosensitive</th>
<th>Cryoresistant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skin</td>
<td>Fat</td>
</tr>
<tr>
<td>Mucous Memb.</td>
<td>Cartilage</td>
</tr>
<tr>
<td>Nerve</td>
<td>Nerve sheath</td>
</tr>
<tr>
<td>Endothelium</td>
<td>Connective tissue</td>
</tr>
<tr>
<td>Granulation tissue</td>
<td>Fibrosis</td>
</tr>
</tbody>
</table>

- Microscopic epithelial & cartilagenous changes resolve over 4-6 wks.
Indications & Patient Selection

- Used only when palliation is reqd.
- Lesion should be accessible to cryoprobe, polypoidal, short length, large endobronchial component. Allow some visibility beyond lesion, functioning lung distal to the lesion.
- May be used to remove mucus plugs, blood clots, FB

Equipment & Techniques

- Cryogen used in liquid phase – Vaporizes – Removes heat
 - Probe/Tissue cooled
- Nitrous Oxide, Liquid Nitrogen are most commonly used.
- N\textsubscript{2}O cools the probe tip to \(-89^\circ\text{C}\)
 - Temp ↑ by 10\(^\circ\text{C}\) per mm from tip [warning effect]
 - Effective killing zone is 5-8 mm
- Probe diameter:
 - Flexible – 2.2mm
 - Semirigid – 2.6mm
- Pre-op evaluation similar to any routine Bronchoscopy procedure
Procedure
- Sedated
 - ETT intubation [Airway control, removal of debris]
 - Anaesthetize airways
 - FOB
 - Inspect airways & localize pathology
 - Cryoprobe passed through working channel until tip proudes from the scope by approx 2cm
 - Under direct visualization tip applied to lesion perpendicularly/tangentially
 - Ice ball forms within 10-15 sec.
 - Freezing time of 30-60 sec.
 - Multiple freeze – thaw cycles applied
 - Forceps- Remove tissue, debris
Results

• Maiwand & Homasson: 600 pts.
 [Clin Chest Med, 1995] Most had Sq Cell Ca
 1/3 pts. Received cryotherapy
 78% subjective improvement

• Mathur et al: Tumor removed in 18 of 20 pts.
 (Chest 1997) with malignant CAO
 12/17 pts. With dyspnea
 5/5 pts. With haemoptysis
 improved clinically
Complications

- Maiwand & Homasson reported – One death from cardio resp. failure in 600 cases [within 5hrs of procedure] – 2 case of TOF
- Mathur et al: One cardio-resp. arrest – Pt. Survived
- Other: Pneumothorax, Bronchospasm
 - Fever
 - Bradycardia

Reported in few numbers
Electrocautery

- Used current to produce heat & destroy tissue.
- **Scientific Basis**
 - Alternating current at a high frequency \([10^5-10^7\ \text{Hz}]\) is used to generate heat which coagulates, vaporizes or cuts tissue.
 - Tissue resistance to current generates heat
 - Low freq. Current \([<10^5\ \text{Hz}]\) stimulates nerves/muscles so this avoided.
 - At 70°C tissue coagulates, >200°C tissue carbonizes
 - Heat
 - Evaporation of Cell water – Tissue destruction
 - Chemical breakdown of cell/tissue constituent
- Electrocautery devices are monopolar: Bronchoscope/Generator/Pt. Should be grounded to complete current
Indication & Pt. Selection

– Similar to cryotherapy
– Impending resp. failure: Accomplish rapid debulking of tumor [Contrary to cryotherapy]
Equipment & Technique

- Insulated FOB with working channel 2.0-2.6mm
- Electrocautery – Blunt tip probe – 1.9mm diameter
 Snare – 1.8mm diameter
- Pt. Grounded with an Electrode pad
- Procedure similar to cryotherapy
- Elongated, flat lesions – Blunt probe used
- Polypoid lesion – snare
- Probe is placed in contact with the tissue so blanching occurs
 - Generator activated
 - Coagulate/cut tissues
 - Debris removed with forceps
Results

Homasson et al: - 56 pts.
- Haemoptysis controlled in 75% cases
- Dyspnea improved in 67%
- Cough/stridor improved in 55%

Sutedja et al: - 15 of 17 pts had immediate restoration of a patent airway defined as >75% of normal airway
- dyspnea relief – 8 pts
- Control of haemoptysis – 4 pts

Complications
- Endobronchial fire (↑ if high FiO₂ used)
- Pacemaker/AICD – May result in devices malfunction
Argon Plasma Coagulation

- Mode of non contact electro-coagulation
- Tungsten electrode creates 5000-6000V spark at tip of probe
- Ionize argon gas released at probe tip
 ↓
- Argon plasma
 ↓
- Coagulative Necrosis
- Coagulation depth- 2-3mm
- Repeat Bronchoscopy reqd. after 1-3 days to remove necrotic material
- Proper grounding & electrical safety must be ensured FiO₂ to be kept below 0.4
- Used for malignant CAO
 - OCC – CAO sec. To granulation tissue at surgical site anastomosis
 - Resp. papillomatosis
Brachytherapy

Brachytherapy allows radiation to be delivered endobronchially most commonly used source: Ir\(^{192}\)

Techniques & Dosage

- After loading technique:
 - FOB is used to place the blind-tipped catheter at desired position
 - Radiation source loaded afterwards

- Can be delivered by Low dose rate [LDR]. Intermediate dose rate [IDR] or High dose rate [HDR] methods

LDR: 75-200 cGy/hr use requires placement for 20-60 hrs treatment given in one session—Requires hospitalization

IDR: 200-1200 cGy/hr each session lasting 1-4hrs.
HDR:
- > 1200 cGy/hr
- Delivered in 3 fractions at weekly interval lasting 3-30 min
- Treated as OPD basis
- Requires multiple FOB

Pts selection:
- NSCLC/Metastatic carcinoma
- Biopsy proven carcinoma
- Not eligible for curative therapy
- Tumors: Extrinsic/Intrinsic
- Residual tumor post surgery/post-procedures
- CI:
 - Fistulas
 - Malignancy – not proven
 - Moribund

- Advantage:
 - Catheter can be placed in all bronchi, segmental bronchi
 - Peribronchial disease

- Disadvantage:
 - Intolerance of catheter
 - Radiation induced bronchitis, cough
 - Fistula formation between bronchioles and Esophagus/pleura/great vessels
 - Haemorrhage
 - Infection

- Complications
 - Massive Haemoptysis
 - Fistula formation in mediastinum
Muto P et al (Oncologist, 2000)

- 320 pts. With lung cancer received HDRBT with Ir192
 - 84 received 10Gy in 1 fraction (Gr. A)
 - 47 received 7Gy in 2 fraction (Gr. B)
 - 189 received 5Gy in 3 fraction (Gr. C)
- Mean survival was 10 mths. from HDRBT
- Symptomatic Improvement:
 - Dyspnea – 90%
 - Cough – 82%
 - Haemoptysis – 94%
 - Obstr. Pneumonia – 90%
- Performance status improved in 70%
- Side-effects: Radiation Bronchitis
 - 80% Gr. A
 - 48% Gr. B
 - 20% Gr. C
 - Fatal Haemoptysis – 5% (similar in each group)
Lo TC et al (Radiother Oncol, 1995)

LDRBT
- Gr. 1- 110 pts.
- 30-60 Gy in 1-2 sessions

HDRBT
- Gr. 2 – 59 pts.
- 7 Gy 3wkly session

Clinical improvement, survival rates, complications were similar in both groups

Gollins SW (Radiother Oncol, 1994)

406 pts. Treated with HDRBT using Ir192

Category I: 324 pts. (80%) previously unirradiated and received single fraction of 15-20 Gy
• Improvement in symptoms at 6 mths:
 Stridor – 92%
 Haemoptysis – 88%
 Dyspnea 60%
 Pain 50%
 23 derived long lasting palliation and reqd. no further treatment

Category II:
• 65 pts (16%) – Received previous EBRT now given HDRBT
• 6 wks post treatment: Symptom palliation similar to category I

Category III:
• 17 pts (4%) – EBRT + HDRBT used concurrently similar levels of palliation compared to category I.
• Conclusion: Efficacy of single HDRBT in palliating symptoms comparable with combination of EBRT + HDRT
• Airway stents
- Play a major role in the management of central airway obstruction
- Indications:
 - Malignant Neoplasm: Extrinsic compression/submucosal disease
 Before EBRT/Endobronchial RT. in acutely symptomatic pts. When all palliative modalities have been exhausted
 - Benign condition: Post-traumatic – fibrotic stricture
• Post Infectious: End bronchial TB
 Fibrosing Mediastinitis
• Post Lung Transplantation: Anastomotic Stenosis
• Tracheobronchomalacea
 Focal – following TT/RT
 Diffuse- Idiopathic
 Relapsing Polychondritis
 Tracheobronchomegaly
• Benign Tumors:
 Papillomatosis
 Amyloidosis
• Miscellaneous:
 Extrinsic Compression from aortic aneurysm
 Tracheal distortion from Kyphoscoliosis
Types

(i) Tube Stents
1. Montgomery T-Tube:
 - Silicone: Simultaneous relief of obstr. at subglottic & distal trachea
2. Westaby Modification:
 - Silicone, tube with distal bifurcation straddles carina
3. Dumon:
 - Silicone, external studs, Y tube most widely used.
4. Fretiag:
 - Silicone with antlat wall metallic reinforcement Y shaped: to prevent migration

Metal stents: Radio-opeque

 Exhibit varying degrees of dynamic expansibility easy to insert

Two types: Fixed diameter stents: Require Balloon dilatation

Self Expandble stents: Spring to pre-defernined diameter once released

(ii) Metallic Stents
1. Palmaz: Stainless steel, balloon expandable
2. Wallstent:
 - Cobalt based alloy self expandable
3. Ultraflex:
 - Nitinol self expandable
4. Gianturco:
 - Stainless steel, self expandable
Techniques:

- Screening FOB to confirm need for stent
- Length of obstructed segment measured
- Stent is delivered using 7-9 F co-axial catheter system
- Stent is mounted on an inner catheter whose central lumen allows guide wire to be passed easily. Stent is maintained in its constraintal form by outer co-axial catheter
• FOB done to define lesion & placement of skin markers corresponding to distal & proximal ends of obs using following:-
• A guide wire then introduced post the obstructed segment under bronchoscope & fluroscopic guidance
• FOB withdrawn with guide wire in place
• Stent with its delivery system inserted over guidewire & distal radio-opaque marker band aligned just beyond the distal skin marker.
• Gradual withdrawal of the outer coltheper allows controlled deployment of stent under continuous fluroscopic monitoring.
• Delivery System is then easily removed through expanded sent.
COMPLICATIONS:
- Granuloma formation
- Infections Tracheitis
- Stent Migration
- Restenosis
- Airway perforation
- 143 Pts.: 309 stent procedures
- Cause of CAO:
 - Benign-33%
 - Malignant- 67%
 - Anastomotic, Tracheo
 - Bronchomalacia Post-Intubation
 - Local extension from Lung/Mediastinum/Thyroid
 - Metastatic: Renal, thyroid sarcoma, breast
 - Majority (77%) > 75% airway narrowing, 82% reqd. Urgent/emergent intervention
 - 87% of stents: silicone rubber
 - 13% Expandable metal stents
• Complications: 42%
 – Stent - Occlusion by secretions
 - Migration
 - Obstr. By granulation
 – Airway perforation – 1%
 – Improvement in symptoms: 95%
 – 95% maintained good palliation 28 mths after original stent in benign disease.
 – 85% maintained palliation for 4mths. in malignant disease.
Vonk-Noondegraf A et al (Chest 2001)

- 14 pts. With imminent suffocation due to major airway obstruction caused by end-stage esophageal cancer (n=5) NSCLC (n=9)
- Stents placed within 24hrs. of hospitalization
- All pts. experienced immediate benefit after stenting (symptom score improved)
- Av Length of survival after stent insertion was 11wks.
- Death mainly due to Tumor progression (10 of 14 pts.)
- No complication was reported
Saad CP et al (Chest 2003)
• Retrospective study at a tertiary care hospital
• 82 pts. who received self expandable metallic airway stents (SEMS)
• Indication:
 – CAO caused by lung cancer (n=50)
 – Post lung transplant (n=11)
 – Other Benign condition (n=21)
• Complications:
 – Infection 15.9%
 – Obstructive granulomas 14.6%
 – Migration 4.7%
• 14 of 16 pts. received mech. ventilation (88%) could be weaned off after procedure
Central Airway obstruction

Yes

Emergent

No

Surgery

Curative Resection

Submucosal or extrinsic lesion

Dilation Stent

Endobronchial Exophytic lesion

Dilation/Coring laser photoresection Electrocautery Argon plasma coagulation

Endobronchial Exophytic lesion

Dilation/Coring laser photoresection cryotherapy Electrocautery Photodynamic therapy Brachytherapy APC EBRT

Submucosal or extrinsic lesion

Dilation Brachytherapy EBRT

No
Thanks