VENTILATION AND PERFUSION IN HEALTH AND DISEASE

Dr. HARIPRASAD VS
Ventilation

- **Total ventilation** - total rate of air flow in and out of the lung during normal tidal breathing.
- **Alveolar ventilation** - represents the amount of fresh inspired air available for gas exchange in alveolar gas compartment

\[
V_A = V_E - V_D \\
V_A \times n = V_T \times n - V_D \times n
\]

Also:

\[
V_{CO2} = V_A \times F_{CO2} \\
V_A = \frac{V_{CO2}}{P_{CO2}}
\]
\[P_{I-02} = 160 \text{ (dry)} \]

\[P_{I-02} = 150 \text{ mmHg} \]
\[P_{I-H_2O} = 47 \text{ mmHg (saturated)} \]

Air (sea level)

Total ventilation \((V'_E) \)

Airways \(\text{ (anatomical dead space)} \)

Alveolar ventilation \((V'_A) \)

Note: all regions saturated with \(H_2O \) except for inspired air (but tracheal air is saturated)

\[P_{A-02} = 100 \text{ mmHg} \]
\[P_{A-CO_2} = 40 \text{ mmHg} \]
\[P_{A-H_2O} = 47 \text{ mmHg} \]

Alveoli

\[F_{A-CO_2} = \frac{V'_CO_2}{V'_A} \]

Alveolar Air Equation (breathing air)

\[P_{A-02} = P_{I-02} - \frac{P_{A-CO_2}}{R} \]
Alveolar gas equation

\[p_{A\text{O}_2} \approx F_{\text{I}O_2}(P_{\text{ATM}} - p_{\text{H}_2\text{O}}) - \frac{p_{\text{aCO}_2}}{R\text{ER}} \]

where:

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>pAO2</td>
<td>The alveolar partial pressure of oxygen</td>
<td>107 mmHg</td>
</tr>
<tr>
<td>FIO2</td>
<td>The fraction of inspired gas that is oxygen</td>
<td>.21</td>
</tr>
<tr>
<td>PATM</td>
<td>The prevailing atmospheric pressure</td>
<td>760 mmHg</td>
</tr>
<tr>
<td>pH2O</td>
<td>The saturated vapour pressure of water at body temperature</td>
<td>47 mmHg</td>
</tr>
<tr>
<td>paCO2</td>
<td>The arterial partial pressure of carbon dioxide (pCO2)</td>
<td>40 mmHg</td>
</tr>
<tr>
<td>RER</td>
<td>The respiratory exchange ratio</td>
<td>0.8</td>
</tr>
</tbody>
</table>
Anatomical Dead space

- Volume of the conducting airways.
- Usually 150 ML.
- Increases with large breath.
- Measured by fowler’s or N₂ wash out method.
Subject breaths though a valve box
• N2 concentration at the mouth is analyzed
• Following a single breath of pure O2, N2 conc increases as dead space gas is washed out by the alveolar gas, finally reaching a plateau.
Physiologic dead space

Physiologic dead space is the volume of lung that does not eliminate CO2

\[
\frac{V_D}{V_T} = \frac{P_{A_{CO_2}} - P_{E_{CO_2}}}{P_{A_{CO_2}}} \quad \text{(Bohr equation)}
\]

- In normal subjects, Anatomical D.S = Physiological DS
- Patients with lung disease, the physiologic DS > Anatomical D.S
 - Inequality of blood flow and ventilation within the lung
<table>
<thead>
<tr>
<th>Breathing Pattern</th>
<th>Tidal Volume (ml)</th>
<th>Breathing Frequency (breaths/min)</th>
<th>Minute Ventilation (ml/min)</th>
<th>Dead Space Ventilation (ml/min)</th>
<th>Alveolar Ventilation (ml/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>normal quiet breathing</td>
<td>500</td>
<td>12</td>
<td>6000</td>
<td>150x12=1800</td>
<td>4200</td>
</tr>
<tr>
<td>shallow & fast</td>
<td>150</td>
<td>40</td>
<td>6000</td>
<td>150x40=6000</td>
<td>0</td>
</tr>
<tr>
<td>deep & slow</td>
<td>1000</td>
<td>6</td>
<td>6000</td>
<td>150x6=900</td>
<td>5100</td>
</tr>
</tbody>
</table>
Dead space ventilation

- Pulmonary embolism
- Vascular obliteration ex. PAH
- Emphysema
Regional Differences in Ventilation

- "change in volume per unit resting volume"!
- lower regions of the lung ventilate better than do the upper zones.
- Supine position-ventilation of the lowermost (posterior) lung exceeds that of the uppermost (anterior) lung.
- Lateral position - the dependent lung is best ventilated.
Why?

- Weight of the lung - lower portions of the lung require a larger pressure below it than above it.
- Intrapleural pressure is less negative at the bottom.
- Basal region has a small resting volume, expanding pressure & placed on the steep part of the pressure volume curve.
- ‘Paradox’
• At low lung volumes the intrapleural pressure at the base exceeds airway pressure.
• The lung at the base is compressed, and ventilation is impossible until the intrapleural pressure falls.
• The apex of the lung is on a favourable part of the pressure-volume curve and ventilates well.
Airway Closure

- The compressed region of lung at the base does not have all its gas exhaled out.
- Airways in the region of respiratory bronchioles close first trapping gas in the distal alveoli.
 1. Only at very low lung volumes in young normal subjects.
 2. Elderly airway closure in the lowermost regions of the lung occurs at higher volumes
- Dependent regions of the lung may be only intermittently ventilated leading to defective gas exchange
Distribution of Blood Flow

- Blood flow within the lung is unequal.
both upper and lower crease, and the regional less pronounced.

Distribution of blood flow is due to pressure differences within the blood vessels.

- difference in pressure between the top and bottom: 30 cm of H$_2$O
- This is a large pressure difference for a low-pressure system as the pulmonary circulation

J Appl Physiol 15: 405-41
No blood flow possible. Severe hemorrhage. Positive pressure ventilation. ‘Alveolar dead space.’
• Zone 4 - can be seen at the lung bases at low lung volumes or in Pulmonary oedema.
• Pulmonary interstitial pressure (Pi) rises as lung volume decreases due to reduced radial tethering of the lung Parenchyma
• Pa > Pi > Pv > PA
Shunt

- blood that enters the arterial system without going through ventilated areas of the lung.
- Physiological
 - thebesian veins
 - Bronchial veins
- Pathological
 - Intracardiac
 - A-V malformations
Shunt equation

\[\dot{Q}_T \times C_{aO_2} = \dot{Q}_s \times C_{\overline{V}O_2} + (\dot{Q}_T - \dot{Q}_s) \times C_{c'O_2} \]

\[\frac{\dot{Q}_s}{\dot{Q}_T} = \frac{C_{c'O_2} - C_{aO_2}}{C_{c'O_2} - C_{\overline{V}O_2}} \]

\(\dot{Q}_T \) = total blood flow
\(\dot{Q}_s \) = shunt blood flow
\(C_{\overline{V}O_2} \) = O2 concentration in shunted blood
\(C_{c'O_2} \) = O2 concentration in end-capillary blood
\(C_{aO_2} \) = O2 concentration in the arterial blood
a 5% shunt for every 100 mm Hg decrease in Pao2 below 700 mm Hg while the patient is breathing 100%.

If Pa_2 on Fi_{O2} 1.0 is 200, the shunt is approximately $(700-200)*5$ ie 25 %.

Pure shunt does not respond to increase in Fi_{O2}.

ARDS – 25-50% shunt, responds to PEEP.
Ventilation-Perfusion Ratio

What determines the concentration of dye?
- rate at which the dye is added (ventilation)
- rate at which water is pumped (blood flow)
Alterations in the Ventilation-Perfusion Ratio

Diagram showing different scenarios with varying oxygen and carbon dioxide levels, illustrating the concept of a decreasing and increasing
\(\dot{V}_A/\dot{Q} \) ratio.
O2-CO2 diagram
Regional changes in V-Q

- Ventilation increases slowly from top to bottom of the lung and blood flow increases more rapidly.
- \(V_{A}/Q \) ratio is abnormally high at the top of the lung and much lower at the bottom.
Regional differences in gas exchange down the normal lung

<table>
<thead>
<tr>
<th>Vol (%)</th>
<th>\dot{V}_A (l/min)</th>
<th>\dot{Q}</th>
<th>\dot{V}_A/\dot{Q}</th>
<th>P_{O_2} (mm Hg)</th>
<th>P_{CO_2}</th>
<th>P_{N_2}</th>
<th>O_2 conc. (ml/100 ml)</th>
<th>CO$_2$</th>
<th>pH</th>
<th>O_2 in (ml/min)</th>
<th>CO$_2$ out (ml/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>.24</td>
<td>.07</td>
<td>3.3</td>
<td>132</td>
<td>28</td>
<td>553</td>
<td>20.0</td>
<td>42</td>
<td>7.51</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>13</td>
<td>.82</td>
<td>1.29</td>
<td>0.63</td>
<td>89</td>
<td>42</td>
<td>582</td>
<td>19.2</td>
<td>49</td>
<td>7.39</td>
<td>60</td>
<td>39</td>
</tr>
</tbody>
</table>

Values in the table represent regional differences in gas exchange down the normal lung.
• Po2 at the apex is higher than at the base of the lung.
• However, the major share of the blood leaving the lung comes from the lower zones, where the Po2 is low.
• This depresses the arterial oxygen saturation.
V-Q mismatch in disease state.
Pure Shunt
Perfusion with No Ventilation
Shunt Like Units

Dead Space
Dead Space Like Units
Ventilation with No Perfusion

Shunt
Dead space
Low V-Q ratio.
• Units with high V-Q ratio add little oxygen to the blood, compared the decrement caused by the alveoli with the low ratio.
• The net result of these mechanisms is a depression of the arterial Po2 below that of the mixed alveolar Po2—alveolar-arterial O2 difference.
• Normal-4
- CO2 dissociation curve is linear
- Although the elimination of CO2 is impaired by V/Q inequality, this can be corrected by increasing the ventilation to the alveoli.
Distributions of Ventilation-Perfusion Ratios

- All the ventilation and blood flow goes to compartments with normal V-Q ratio of 1.0.
- No blood flow to the unventilated compartment (shunt).
V-Q distribution in COPD

- large amount of ventilation to lung units with high V-Q ratios.
- ‘Physiologic dead space’
 - excessive ventilation to high V-Q units constitute ‘wasted ventilation’.
 - There is little blood flow to units with an abnormally low VA/Q, causing hypoxemia.
• Increase in ventilation to high VA/Q units → physiologic dead space.

• large amounts of blood flow to low VA/Q units → physiologic shunt → severe hypoxemia

• type B disease.
Hypoxic vasoconstriction

- Alveolar hypoxia constricts small pulmonary arteries
- Direct effect of the low PO2 on vascular smooth muscle
- Directs blood flow away from poorly ventilated areas → minimizing the arterial hypoxemia.
- Bronchodilators can abolish this mechanism and cause mild hypoxia by increasing the blood flow to poorly ventilated areas.
V-Q mismatch in Asthma

- considerable amount of the total blood flow to units with a low VA/Q → mild hypoxemia
• Bronchodilators increase the hypoxemia, by abolishing the HPV and , increasing the blood flow to lung units with low V/Q ratio’s
V-Q mismatch in Pulmonary Edema

• abnormal accumulation of fluid in the extravascular spaces and tissues.
• severe hypoxemia results from;
 • Shunt - > 50 %
 • Blood flow to low V-Q areas
Perivascular or peribronchial space

Edema
Pulmonary Embolism

- Moderate hypoxemia without carbon dioxide retention
 - diffusion impairment
 - opening up of latent pulmonary a-v anastomoses
 - V-Q inequality-areas with High V-Q ratios
 - dead space ventilation
 - Shunting
- Blood flow is greatly reduced but not completely absent, leading to areas with high V-Q ratio's.
- Shunt occurs due to blood flow through the areas with hemorrhagic atelectasis, in which the alveoli are not functional.
• The large physiological dead space in pulmonary embolism can cause hypercapnia, however the substantial increase in ventilation maintains the Paco$_2$ at a normal level.

• In the setting of acute PE, hypercapnia reflects massive embolism as the ventilatory muscles are unable to sustain the marked increase of minute ventilation needed to maintain normal arterial Paco$_2$.
Interstitial Pulmonary Fibrosis

- Basic pathology - thickening of the interstitium of the alveolar wall
- Spirometry - restrictive pattern
- Characterized by hypoxia and hypocapnia at rest.
- Mild hypoxia at rest, worsened by exercise.
<table>
<thead>
<tr>
<th>Rest</th>
<th>Exercise</th>
</tr>
</thead>
<tbody>
<tr>
<td>V-Q Inequality</td>
<td>Diffusion impairment</td>
</tr>
<tr>
<td>Major factor during rest</td>
<td>Major factor during exercise</td>
</tr>
<tr>
<td>D.I minor factor, as lung</td>
<td>Exercise -↓ time for RBC’S in pulmonary circulation</td>
</tr>
<tr>
<td>as enormous reserves of diffusion at rest.</td>
<td>Further worsens hypoxia</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>V-Q Inequality</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Inadequate ↑ in Cardiac output</td>
</tr>
<tr>
<td></td>
<td>(↓PaO2 in mixed blood, ↑PVR)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Inappropriately high</td>
</tr>
<tr>
<td></td>
<td>Respiratory rate→↑ dead</td>
</tr>
</tbody>
</table>
- Hypoxemia can be explained by the degree of VA/Q inequality at rest.
- Measured PaO2 below predicted in exercise!
- Additional hypoxemia is due to D.I.
DL_{Co} as a diagnostic test?

- $Dlco$ is strikingly reduced in ILD
- Remains *low in exercise*, normal- \uparrow 2-3 fold.
- Etiology-
 - thickening of the blood–gas barrier
 - \downarrow blood volume because of obliterated blood vessels by the fibrotic process
- \rightarrow if the $Dlco$ is *not low*, the diagnosis of ILD should be regarded with suspicion.
Diseases of the Chest Wall

- **Scoliosis** - lateral curvature of the spine
 - More serious
- **Kyphosis** - posterior curvature.
- **Restrictive lung disease**!
- **Hypoxemia** due to:
 - V-Q inequality
 - Atelectasis & compression of dependent areas
 - Airway closure
Hypercapnia

- Due to ↑ W.O.B caused by
 - Stiff chest wall
 - respiratory muscles operating at mechanical disadvantage
- reduced ventilatory response to CO2
Take home points!

- V-Q matching is required for maintaining normal PO2 and PCO2 levels in blood.
- V-Q mismatching is one of the most common causes of hypoxia and rarely hypercapnia in most of the lung diseases.
- Shunt and dead space ventilation are the two ends of the spectrum of V-Q mismatch.