Introduction

- Introduced by Swan & associated in 1970
- Balloon tipped, flow directed catheters
- Rationale for use:
 - Clinical observation subjective/inadequate in critically ill
 - Allow measurements of determinants & consequences of cardiac performance
 [Pre-load, Afterload, CO]

Essential for management of unstable Patients
Indications

• Assessment of Shock:
 – Cardiogenic, Hypovolemic
 – Septic, Pul. Embolism

• Assessment of Resp. Distress:
 – Cardiogenic Vs Non-Cardiogenic

• Management of Complicated MI:
 – Hypovolemia Vs Cardiogenic Shock
 – VSD with MR
 – Severe LVF
 – RV Infarction
• Assessment of Therapy in Selected Individuals:
 – Afterload reduction in patients with severe LVF
 – Inotropic agent
 – Vasopressors

• Management of Post-Op Open Heart Surgical Pts.
 – Assessment of cardiac tamponade
 – Assessment of Valvular heart disease
• Assessment of Fluid Requirements in Critically Ill Pts.

 – GI hemorrhage
 – ARF
 – Decompensated Cirrhosis
 – Sepsis
 – Burns
 – Advanced peritonitis
Catheter Features & Types

- Made of PVC
- Coated with Heparin - Reduce Thrombogenicity
- Std length: 110cm - Ext-diameter; 5-7 Fr
- Balloon at tip - Guides the catheter
 (Air filled) Minimizes endocardial damage or arrhythmia
- Double lumen - Balloon inflation
 - Measure intravascular pressure/Sample blood
• Triple lumen - Simultaneous measurement of RA, PA pressure
• 4 Lumen - CO measurements via thermistor (most commonly used)
• 5 lumen - Central venous access for fluid/medicine infusion

Special Purpose
• Pacing Catheter - 2.4 Fr. bipolar pacing electrodes
 - Intra cardiac pacing
• Continuous SvO₂ - Catheter
Insertion Techniques

- Inserted percutaneously or via cut down into basilic, brachial, femoral, sub-clavian or internal jugular veins
- Internal jugular vein approach preferred:
 - Pt. Arm movements not encumbered
 - Used in pts. undergoing intra-thoracic Sx
 - Fewer thrombotic/septic complications may occur
• Insert Central Venous Cannula

 Position the guidewire in vein

 Vessel dilator sheath apparatus advanced into vessel

 Remove guidewire and vessel dilator leaving introducer sheath in vessel

 Pass the catheter through the introducer sheath into vein
Advance it until tip reaches RA
(Antecubital fossa: 35-40cm, Int. Jugular vein 10-15cm, sub clavian vein 10cm, Femoral vein 35-40cm)

Obtain RA blood for O_2 saturation from distal port, record RA pressure

Inflate balloon with recommended amount of air. Advance catheter until RV pressure tracing seen on monitor

Obtain and record RV pressures
Advance into PA (Diastolic pressure tracing rises above that in RV)

Further advancement results in fall in the pressure tracing from the systolic pressure in RV and PA, record PAWP. Deflate balloon Secure catheter in position by suturing it to skin

CXR: To confirm position
Catheter tip should appear 3–5 cm from midline
Checklist for Verifying Catheter Position

<table>
<thead>
<tr>
<th></th>
<th>Zone 3</th>
<th>Zone 2 or Zone 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAWP countour</td>
<td>Cardiac Ripple (A+V waves)</td>
<td>Unnaturally smooth</td>
</tr>
<tr>
<td>PAD Vs PAWP</td>
<td>PAD > PAWP</td>
<td>PAD < PAWP</td>
</tr>
<tr>
<td>PEEP trial</td>
<td>$\Delta PAWP < \frac{1}{2} \Delta PEEP$</td>
<td>$\Delta PAWP > \frac{1}{2} \Delta PEEP$</td>
</tr>
<tr>
<td>Catheter tip location</td>
<td>LA level or below</td>
<td>Above LA level</td>
</tr>
<tr>
<td>PAWP correlates well with LVEDP</td>
<td>[(N) MV, (N) LV function]</td>
<td></td>
</tr>
<tr>
<td>PAWP interpretation</td>
<td>done in end expiration</td>
<td></td>
</tr>
</tbody>
</table>
With PEEP application,

Pl. pressure $\uparrow \frac{1}{2}$ of applied PEEP : (n) Lungs

$\uparrow \frac{1}{4}$ of PEEP : ARDS

- Temporary disconnection of PEEP not recommend :
 1. PEEP discontinuation \uparrow venous return - ‘Auto trans fusion effect’ → Cardio – Pulm. Decompensation
 2. Alter Resp. mechanics and gas exchange
Normal Resting Pressures Obtained During Right Heart Catheterization

<table>
<thead>
<tr>
<th>Cardiac Chamber</th>
<th>Pressure (mmHg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Right atrium</td>
<td></td>
</tr>
<tr>
<td>Range</td>
<td>0 – 6</td>
</tr>
<tr>
<td>Mean</td>
<td>3</td>
</tr>
<tr>
<td>Right ventricle</td>
<td></td>
</tr>
<tr>
<td>Systolic</td>
<td>17 – 30</td>
</tr>
<tr>
<td>Diastolic</td>
<td>0 – 6</td>
</tr>
<tr>
<td>Pulmonary artery</td>
<td></td>
</tr>
<tr>
<td>Systolic</td>
<td>15 – 30</td>
</tr>
<tr>
<td>Diastolic</td>
<td>5 – 13</td>
</tr>
<tr>
<td>Mean</td>
<td>10 – 18</td>
</tr>
<tr>
<td>Pulmonary artery wedge (mean)</td>
<td>2 – 12</td>
</tr>
</tbody>
</table>
Approximate Normal Oxygen Saturation and Content Values

<table>
<thead>
<tr>
<th>Chamber Sampled</th>
<th>Oxygen Content (Volume %)</th>
<th>Oxygen Saturation (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Superior vena cava</td>
<td>14.0</td>
<td>70</td>
</tr>
<tr>
<td>Inferior vena cava</td>
<td>16.0</td>
<td>80</td>
</tr>
<tr>
<td>Right atrium</td>
<td>15.0</td>
<td>75</td>
</tr>
<tr>
<td>Right ventricle</td>
<td>15.0</td>
<td>75</td>
</tr>
<tr>
<td>Pulmonary artery</td>
<td>15.0</td>
<td>75</td>
</tr>
<tr>
<td>Pulmonary vein</td>
<td>20.0</td>
<td>98</td>
</tr>
<tr>
<td>Femoral artery</td>
<td>19.0</td>
<td>96</td>
</tr>
<tr>
<td>Atrioventricular oxygen content difference</td>
<td>3.5 – 5.5</td>
<td>-</td>
</tr>
</tbody>
</table>
Thermodilution Techniques

- Principle: Known quantity of cold solution introduced into circulation and adequately mixed, the resultant cooling curve recorded at downstream site allows calculation of net blood flow.
- Thermiostor placed in the distal port (4 cm from catheter tip)
- Procedure: 10ml D$_5$W (0-24°C) injected into RA Baseline PA blood temp. Subsequent temp. change Recorded by Thermiostor by computer Curve analyzed
- Average of 3 evenly spaced determinations represent accurate estimate of CO.
- should be done end expiration
- Inaccurate in low cardiac output states/TR/ASD or VSD
Fick Techniques

- Principle: Total release or uptake of a substance by organ equals product of blood flow through that organ X diff. of arteriovenous conc. of the substance.

\[CO = \frac{O_2 \text{ Consumption (ml/min)}}{CaO_2 - CvO_2} \]

- O₂ consumption (VO₂) = 70Kg man: 250ml/min
 - 130ml x BSA [if Fat ≥ 15% of BW]
 - 140ml x BSA [if Fat < 5% of BW]

- O₂ Content = % Saturation x Hb (g/dl) x 1.39 (ml O₂/g Hb) x 10

- Cannot be used in Intra cardiac shunt
Analysis of Mixed Venous Blood

• CO directly proportional to mixed venous O$_2$ partial pressure.

• Serial measurements of SVO$_2$ may display trends in CO

 \[
 \text{SvO}_2 : \quad 70-75\% \quad - \quad (n) \\
 < 60\% \quad - \quad \text{Heart failure} \\
 < 40\% \quad - \quad \text{Shock}
 \]
Derived Parameters

- Cardiac Index: \(\frac{CO \ (L/min)}{BSA \ (m^2)} \)
- Stroke volume: \(\frac{CO \ (L/min)}{HR \ (beats/min)} \)
- Stroke index: \(\frac{CO \ (L/min)}{HR \ (beats/min)} \times BSA \ (m^2) \)
- Mean Arterial pressure: \(\frac{(2 \times \text{diastolic}) + \text{systolic}}{3} \) [MAP] (mm Hg)
- Systemic vascular Resistance (dyne/sec/cm\(^{-5}\)):
 \[
 \frac{MAP - \text{mean RA pressure}}{CO \ (L/min)} \times 80
 \]
- Pulmonary arteriolar resistance (dyne/sec/cm\(^{-5}\))
 \[
 \frac{\text{mean PA pressure} - \text{PAWP}}{CO \times 80}
 \]
- Total pulmonary resistance: Mean PA pressure/ CO x 80
- \(\text{DO}_2 \ (ml/min/m^2) = \text{Cardiac index} \times \text{CaO}_2 \)
Clinical Applications

• **Hypovolemia**: ↓ CI, RAP, PAWP, ↓ SBP

 PAWP: 15-18mmHg in AMI and ↓ LV compliance
 small amt. Fluid infusions

 (Higher Lt. heart filling pressure, 18-24 mmHg in Pts. With hypovolemia in AMI – optimal for improving CI)

• **Pul. congestion**:

 – Increased PAWP (>18mmHg)

 • Causes: LVF or fluid overload

 • Diuretics, intotropic drugs, vasodilator agents

 – PAWP: (N)/ ↓

 • Pul. Congestion due to: changes in pul. Capillary memb.
- **Heart failure:** S/o peripheral hypoperfusion/shock
 \[\downarrow CI, \uparrow PAWP \]
 RV Failure: \[\uparrow \text{Mean RAP}, \]
 [Pul. Vascular disease \[\uparrow \text{RV end diastolic pressure} \]
 RV Infraction]

- **Tricuspid Insufficiency:** Seen in RV dilatation Pul. HT
 \[\uparrow \text{V wave} \& \text{steep y descent} \quad \text{RA waves} \]
 \[\uparrow \text{Mean RAP} \]

- **Ac. Mitral Regurgitation:** Giant ‘V’ wave in PAWP tracing
 Bifid PA waveform

- **Ac. VSD:** Marked O2 saturation step-up in PA or RV
 compared to RA
 O2 step-up > 10% bet. RA & RV \[\rightarrow \text{Significant} \]
 L \[\rightarrow \text{R Ventr. Shunt} \]
• **RV infarction:** - \uparrow RAP

 RA waveforms: Prominent x & y descent
 RAP \uparrow inspiration : Kussmaul’s sign
 \downarrow RV stroke volume

• **Cardiac Tamponade:** Elevation & Equalization of RA, RV diastolic, PA diastolic, mean PAWP

 RA waveform: Dominant x descent
 Mean RA pressure \downarrow inspiration

• **Pulmonary Embolism:** Mean PA pressure : 20-40 mmHg

 RV, PA syst. Pressure: 50mmHg
 \uparrow PVR

 PAWP: low/normal
 a & v waves may disappear
Complications

<table>
<thead>
<tr>
<th>Complications</th>
<th>Incidence %</th>
</tr>
</thead>
<tbody>
<tr>
<td>• of vascular Access</td>
<td></td>
</tr>
<tr>
<td>– Arterial puncture</td>
<td>1.1 – 1.3</td>
</tr>
<tr>
<td>– Bleeding at cutdown site</td>
<td>5.3</td>
</tr>
<tr>
<td>– Pneumothorax</td>
<td>0.3 – 4.5</td>
</tr>
<tr>
<td>– Air Embolism</td>
<td>0.5</td>
</tr>
<tr>
<td>• of placement</td>
<td></td>
</tr>
<tr>
<td>– Minor dysrrhythmia</td>
<td>4.7 – 68.9</td>
</tr>
<tr>
<td>– Severe dysrrhythmia</td>
<td>0.3 – 62.7</td>
</tr>
<tr>
<td>– CHB</td>
<td>0 – 8.5</td>
</tr>
<tr>
<td>• of catheter residence</td>
<td></td>
</tr>
<tr>
<td>– PA rupture</td>
<td>0.1 – 1.5</td>
</tr>
<tr>
<td>– Catheter related sepsis</td>
<td>0.7 – 11.4</td>
</tr>
<tr>
<td>– Thrombophebitis</td>
<td>6.5</td>
</tr>
<tr>
<td>– Venous thrombosis</td>
<td>0.5 – 66.7</td>
</tr>
<tr>
<td>• Pul. infarction</td>
<td>0.1 – 5.6</td>
</tr>
<tr>
<td>• Endocarditis/valvular or Endocardial vegetation</td>
<td>2.2 – 100</td>
</tr>
<tr>
<td>• Deaths Attributed to PA Catheter</td>
<td>0.02 – 1.5</td>
</tr>
</tbody>
</table>
• **Balloon Rupture:** - When recommended inflation volumes exceeded
 - Air emboli \rightarrow Access to arterial system balloon \rightarrow embolize to distal pul. circulation

• **Knotting:** Occur when lops form in cardiac chamber and catheter repeatedly withdrawn & re-advance
 Removed: Transvenously, Guidewire placement, Venotomy

• **Pulmonary Infarction:** Peripheral migration of catheter tip
 - Inflated balloon wedged for long time
 - Thrombus formation around catheter or areas of endothelial damage
 - Lesion small asymptomatic
 - Avoided by: continuous heparin flush careful monitoring of PA waveform
• **Pulmonary artery perforation:**
 Mech. - Wedged catheter tip position favoring eccentric balloon inflation
 - Cardiac pulsations – catheter tip repeatedly contacts vessel wall
 - Catheter tip near arterial bifurcation (integrity compromised)
 - Lat. pressure on vessel wall
• **Risk factors:** Pul. HT/MVD/ \(\uparrow \) Age/ \(\downarrow \) Temp./Anti coagulant use
• **Massive haemoptysis**
• **Mx:** Immediate wedge arteriogram, bronchoscopy
 - Intubation of Unaffected lung
 - Emergency lobectomy/pneumonectomy
 - Other options: Application of PEEP
• **Thromboembolic:** Thrombi at catheter tip, endocardial sites phenomena
 - Suspect when: consistently dampened pressure tracing without peripheral catheter migration
 - Heparin bonded catheters reduce thrombogenecity

• **Rhythm disturbances:**
 – Commonly occur during insertion
 – Ventr. Arrhythmia:
 • Most are self limiting
 • Risk factors: AMI, Hypoxia, Acidosis, Hypocalcemia, Hypokalemia
 • Prophylactic use of lidocaine in high risk pts. will decrease incidence
 – Irritation of conducting system
 – Arrhythmia persists after lidocaine therapy associated with HD compromised

} Remove catheter
• RBVB: Seen in ASMI/Ac. Pericarditis
• Preexisting LBBB: Complete heart block

• **Infections:** Incidence decreased
 in situ time > 72-96 hrs
 CO determinations repeatedly
 Freq. Blood withdrawals
 Decreased inf.: - Sterile protective sleeve
 - Antibiotic bonding to catheter
 - Empiric changing of catheter over guidewire
 \uparrow Risk of sepsis
Pul Artery Catheter Consensus Conference: Consensus Statement 1997

Does Management with PAC Improve Pt. Outcome

<table>
<thead>
<tr>
<th>Disease/ disorder</th>
<th>Answer</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. MI with</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Hypotension or cardiogenic</td>
<td>Yes</td>
<td>E</td>
</tr>
<tr>
<td>Shock</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Mech complication</td>
<td>Yes</td>
<td>E</td>
</tr>
<tr>
<td>- RV Infarction</td>
<td>Yes</td>
<td>E</td>
</tr>
<tr>
<td>2. CCF</td>
<td>Uncertain</td>
<td>D</td>
</tr>
<tr>
<td>3. Shock/HD instability</td>
<td>Uncertain</td>
<td>E</td>
</tr>
</tbody>
</table>
4. Cardiac Surgery
 - Low Risk No C
 - High Risk Uncertain C

5. Geriatric Pts undergoing Sx No E

6. Trauma Yes E

7. Sepsis/Septic Shock Uncertain D
Meta-Analysis for effectiveness of PAC

- 12 RCT, 1610 Pts.
- Morbidity events observed in 62.7% of PAC group
 74.3% Control group. (p= 0.0168)
- Statistically significant reduction in morbidity using PAC guided strategies.

Ivanov R et al CCM 2000
4182 Pts.

Effect of Pulmonary Artery Catheter on intensive Care mortality in all Pts. Admitted to an ICU in a British Hospital examined.

No increased mortality attributable to use of PAC demonstrated.

Murdoch SD Br J Anaes 2000
Sepsis/Septic Shock

outcome better in patients with septic shock unresponsive to fluid resuscitation and vasopressors, if PAC prompts change in therapy

Mimoz et al CCM 1994

However, PAC placed in first 24 hrs. of ICU admission not shown to significantly alter outcome in general population of sepsis/septic shock.

No benefit in MOF and sepsis

Connors et al JAMA 1996
RCT of 1994 patients (High risk patients ≥ 60yrs. ASA class III or IV scheduled for urgent/elective Sx followed by ICU stay)

No benefit to therapy directed by PAC over standard care

Case Control Study

- 141 pairs Mx with/without PAC
- Severe sepsis
- PAC use not associated with change in mortality rate or resource utilization

Yu DT et al. CCM 2003
Thank You