Exhaled & serum biomarkers in pulmonary diseases

Arjun Srinivasan
What are biomarkers?
Why resort to biomarkers?

- Early diagnosis
- Differentiating diseases
 - Classic
 - Cardiogenic vs. non cardiogenic PE
 - Sepsis vs. no sepsis
- Monitoring disease activity
- Prognostication
- Monitoring response to therapy
Source

- Exhaled breath
 - FENO
 - Other Exhaled breath condensate (EBC)

- Serum
 - CRP
 - Procalcitonin
 - S-TREM 1

- Sputum / BAL

- Tissue
• Micron/ sub-micron particles emanating from mouth / ET have been identified

• Origin is of speculation
 – Sheer force of turbulence aerosolizing airway lining fluid
 – Alveolar origin – due to force applied to open alveoli- potential to kinetic conversion
Points to consider

• How to collect?
• What to collect?
• How to isolate?
• Contribution with respect to particle size
• Standardization in disease & health
• Dilution factor
• Contamination factor
NO synthesis

\[\text{NOS} \quad \text{NADPH} \quad \text{BH4} \quad \text{FAD} \]

\[\text{O}^\cdot \quad \text{NO}^\cdot \]

\[\text{L-arginine} \quad \text{L-citrulline} \]

Fractional Exhaled Nitric Oxide (FENO)

• 3 isotypes
 – Calcium dependent
 • Endothelial
 • Neurogenic
 – Calcium independent
 • Inducible (main constituent)

• Volatile EBC
 – Measured by its reaction with Ozone by chemiluminescence

• Measured
 – Offline
 – Online
Functions of NO

NITRIC OXIDE

- Increase c GMP
 - Br/vaso dilation
- Deaminates DNA
 - Kills microbe
- Increase Th2
 - IL 4, IL 5, IL 10
- Increase edema
 - Desquamation
Factors affecting FENO

- **Pulmonary**
 - Flow – measured @ constant rate of 50 ml/s
 - Nasal contamination – breathing against closed palate
- **Age**
 - Increases with age esp children
- **Sex**
 - Male > females (recent studies contradictory)
- ** Anthropometric factors**
 - Height - strong +ve corelation
 - BMI & Race - not enough evidence
• Smoking & alcohol
 – Decreases FENO
• Dietary habits
 – Radish, lettuce, water, caffeine & fats – increase FENO
• Medication
 – Steroids & montelukast decreases
 – L-arginine & B agonist increases
• Others
 – Decreases after exercise, bronchoprovocation, spirometry & sputum induction
Reference values

• Difficult to establish due to numerous confounding factors

• Largest study in normal subjects involved > 3,300 pts

• Defined normal value between 24-54 ppb depending on age & height

(CHEST 2007; 131:1852–1856)
FENO in Br asthma

• Over 400 papers looking at various aspects of asthma management
Diagnosis

• Small studies have shown FENO may be an useful screening tool in high risk individuals
• Results from BASALT study evaluating three different strategies in asthma control is to be published later this year
• Atopy
 – Elevated in atopic individuals as a marker of eosinophillic inflammation
 – Atopic asthmatics have even higher levels
 – FENO is also increased in allergic rhinitis
 – Factors need consideration while interpreting FENO values
 – Reduce sensitivity of FENO as a screening tool for asthma in community
• COPD
 – Conflicting data from studies
 – Inversely proportional to FEV1, DLCO, SaO2
 – Normal or only slightly elevated in COPD
 • Smoking decreases NO
 • Possibly due to conversion to peroxynitrite & nitrate
 – Usually elevated during exacerbations
 – Need to evaluate role in certain subsets like Ex-smokers
 – Data emerging for use of CalvNO as marker of early peripheral inflammation
• PAH
 – Etiology is due to reduced vasodilator activity
 – NO is a potent vasodilator in pulmonary circulation
 – Serial FENO levels to monitor disease activity
 – It is inversely proportional to pulmonary artery pressures
 – Increase with successful lowering of pressures with therapy
• ILD
 – Increased due to CalvNO secondary to reduced DLCO
• Lung transplantation
 – For detecting
 • Infection – low sensitivity (57%) - not a good tool
 • BOS – high FENO has a good NPV but low specificity & PPV
 • Acute rejection

• Cystic fibrosis & ciliary dyskinesia
 – Decreased levels
Clinical application

<table>
<thead>
<tr>
<th>Increased FENO</th>
<th>Variable changes in FENO reported</th>
<th>Decreased FENO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asthma1, 79</td>
<td>Bronchiectasis91-93</td>
<td>Cystic fibrosis91, 108-110</td>
</tr>
<tr>
<td>Late asthmatic response80, 81</td>
<td>COPD17, 75, 78, 94-102</td>
<td>Primary ciliary dyskinesia111, 112</td>
</tr>
<tr>
<td>Allergic rhinitis19</td>
<td>Fibrosing alveolitis103</td>
<td>Pulmonary hypertension113</td>
</tr>
<tr>
<td>Viral infections43, 44, 82</td>
<td>Sarcoidosis104</td>
<td>HIV infection114</td>
</tr>
<tr>
<td>Hepatopulmonary syndrome63</td>
<td>Systemic sclerosis105-107</td>
<td>ARDS115</td>
</tr>
<tr>
<td>Liver cirrhosis84, 85</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acute/chronic rejection of lung transplant including bronchiolitis obliterans86-90</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 Thorax 2006;61:817–827.
H₂O₂

• Produced by
 – Superoxide dismutase mediated conversion of superoxide ions

• Detected by
 – Spectrophotometric method using horseradish peroxide

• Overlap in levels found in asthma & COPD hence may be non specific biomarker

• Levels proportional to dyspnoea, sputum neutrophils – s/o disease activity
pH

- Airway acidification & regulation – implicated in pathogenesis of obstructive lung disease
- Unlike other EBCs pH in normal healthy volunteers from different studies similar
- Median pH ~ 8 (data from > 400 subjects)
- This suggest reproducibility across laboratories
- pH is decreased across spectrum of pulmonary diseases in the limited studies available
- Significant overlap across different diseases present
Leukotriene B4

- Produced from arachidonic acid by 5-lipooxygenase
- Estimated using ELISA
- Potent neutrophil chemoattractant – role in airway inflammation
- Mainly been evaluated in COPD & asthma
- Significant variability seen among patients with similar profile across different study groups
- Overlap between pts & healthy controls
8- Isoprostane

- Produced by free radical peroxidation of arachidonic acid
- Supposed marker of oxidative stress in lungs
- Measured by ELISA
- Mainly elevated in COPD & asthma
- Baseline across similar clinical profile is variable in different studies
- Hence repeatability & standardization are difficult to achieve
Prostaglandins

• PGE2 is elevated in stable COPD & asthmatics who are smokers but not in non-smoking asthmatics
• TXB2 is elevated in asthmatics but not in COPD
• Profile of PG may differ in asthma & COPD
• More studies needed to establish normal levels & variability
Other EBC

• Small studies have shown increase as well as positive co-relation with disease activity for various EBC
 – Ammonia
 – Nitrates & nitrites
 – Hydrocarbons (ethane, pentane)
 – CO

• All hampered by size of study, expense, lack of reproducibility, standardization, validation & hence inability for use outside research setting
Serum biomarkers

• Ideal marker
 – Rise before clinical manifestation
 – Easy to measure
 – Help target intervention
 – High sensitivity
 – Consistent results
 – Short half life
 – Cost effective
• Inflammatory biomarkers
 – CRP
 – Procalcitonin
 – S-TREM 1
 – Copeptin
 – Cytokines

• Protein biomarkers
 – CEA
 – CYFRA
 – SP –A & SP - D
CRP

- Acute phase reactant
- Increased in most forms of tissue damage, inflammation & infection
- Liver secretes it in response to IL 6
- Most extensively studied biomarker
- Evaluated in almost all subspecialties of medicine !!!
- Pulmonary diseases
 - COPD
 - Asthma
 - CAP/ VAP & sepsis
CRP in COPD

- Systematic review of studies showed baseline CRP is elevated in stable COPD
CRP in AECOPD

- CRP tends to correlate with severity of exacerbation
- Decreases in responders but data is only from observational studies
- Effect of steroids on CRP unclear
CRP in CAP / VAP

• Prediction of VAP / CAP
 – More so for VAP / HAP in admitted pts
 – Requires serial monitoring (possibly daily)

• Surrogate tool for diagnosis
 – Most sensitive of the available biomarkers for thoracic infections
 – In two studies was better than procalcitonin

• Monitoring therapy
 – Short half life
 – Hence shows decreasing trend in responders
Patterns of CRP course in pneumonia

Pattern A

Pattern B

Pattern C

Pattern D

Current Opinion in Infectious Diseases 2008, 21:157–152
CRP in asthma

• With the advent of hs-CRP several studies have been published recently
• Including one from India
• Salient points
 – Elevated in asthma
 – Co-relate with disease severity
 – May be surrogate marker for systemic inflammation
CRP in sepsis

• It is elevated in sepsis
• Performs better than clinical parameters in predicting infection
• Low sensitivity for differentiating SIRS or non-septic shock from sepsis
• Was hailed as a prognostic marker – same has been challenged in recent trials
• In general inferior to PCT as a biomarker in sepsis
Procalcitonin

In sepsis

• Advantages
 – Relatively specific marker for sepsis
 – Differentiates SIRS from septic shock
 – Absolute & more importantly persistent elevation co – relates with organ dysfunction scores & poor prognosis
 – Serial measurements have more meaning
 – < .5ng/ml & > 2 ng/ml a/w low & high risk respectively for sepsis

• FDA has approved it for use in critically ill with emphasis on
 – Conjunction with other lab & clinical parameters
 – Serial values to be interpreted rather than a one
• Disadvantages
 – Available assays are relatively insensitive for assessment of minor daily variations
 – Though general cut offs have been defined but evidence for same are weak (based on few studies)
 – Marker has been applied over spectrum of diseases, its utility in individual pt needs clinical discretion
 – Utility in presence of renal failure not defined
 – Cost
PCT in pneumonia

• Relatively insensitive for predicting pneumonia in the absence of widespread sepsis

• For deciding whether to start antibiotic
 – Two studies compared procalcitonin based vs. standard protocol for need for antibiotic therapy
 – Significant decrease in duration of therapy & cost with no morality difference
 – Offset by cost of serial procalcitonin
S-TREM 1
In sepsis & pneumonia

• Few single centre trials have shown
 – Sensitive marker for distinguishing sepsis from SIRS
 – Potential as a useful biomarker in sepsis

• Uncertainties
 – No real large RCTs
 – Value of serial measurement unclear
 – Conflicting reports on course of illness & plasma level co-relation
Copeptin

- Secreted along with AVP from pre-pro-vasopressin
- Stable in withdrawn blood for days
- Blood levels have been used in diagnosis of
 - Diabetes insipidus
 - Cardiovascular disease
 - Sepsis
 - Pneumonia
 - AECOPD
- Data for support of its use in pulmonary diseases is emerging
ARDS

• Long PTX 3 was found to be elevated in pts of ARDS in a single trial

• In a recently published study by ARDSnet group
 – IL 8, neutrophil chemotactic factor & SP-D levels were found to be significant in predicting mortality when interpreted with clinical predictors

Chest 2010;137 (2):288-96
Biomarkers in Ca lung

• CEA
 – Elevated in adeno ca & LCLC
 – Limited value when used alone
 – It is used in combination with CYFRA for diagnosis
 – Can also be used to monitor therapy in NSCLC

• CYFRA
 – CYFRA 21-1 potential for monitoring Rx in NSCLC

• Both are non specific biomarker also elevated in other cancers

• ProGRP & NSE are potential tools for diagnosis & monitoring Rx in SCLC

BMB reports 2008; 41(9): 615-625
Summary

• No single biomarker is ideal
• Our understanding of most is still incomplete
• A panel of biomarkers could be more helpful with each supplementing the other
• Need for more reliable assays
• Serial monitoring would hold the key in the future in both acute & chronic pulmonary diseases