NOSOCOMIAL PNEUMONIA - APPROACH, PREVENTION & MANAGEMENT

ABHISHEK GOYAL
22/01/10
DEFINITIONS

- **Hospital Acquired Pneumonia (HAP)**
 - ≥48 h after hospital admission (excluding an incubating infection)
 - Early onset HAP vs Late onset HAP

- **Ventilator Associated Pneumonia (VAP)**
 - ≥48-72 h after endotracheal intubation
 - Early onset VAP vs Late onset VAP

- **Health Care Associated Pneumonia (HCAP)**
 - hospitalized in an acute care hospital ≥ 2 days in preceding 90 days;
 - nursing home or long-term care facility resident;
 - recent iv chemotherapy, or wound care within past 30 days
 - attended a hospital or hemodialysis clinic

MMWR Recomm Rep 2004;53(RR-3):1-36
EPIDEMIOLOGY

- 15% of all hospital associated infection → 2nd common nosocomial infections worldwide
- 9 - 27% of all ICU acquired infection & > 50% of antibiotic prescribed
- Mechanical ventilation ↑ risk by 6 - 21 times & incidence of VAP increases with duration of ventilation
- Risk of VAP highest early in the course of hospital stay
 - 3%/day for first 5 days, 2%/day from 5 to 10 days & 1%/day thereafter
- Increases hospital stay (7-9 days/pt) & extra cost burden ($40,000/pt)
- Mortality rate 24%-70% & Attributable mortality: 33-50%
- Crude mortality rate >20 % if high risk pathogen involved.
- Mortality in Pt with VAP twice than pts without VAP
- At PGI there were 77 episodes of infection in 67 of the 201 patients.
 Pneumonia was the most common infection (46/201 patients, 23%), which constituted 59.7% of all nosocomial infections.

CDC Guideline for Prevention of Healthcare Associated Pneumonias 2003
Am J Respir Crit Care Med 2005;171;388-416
MORTALITY RATES & RISK RATIOS FOR DEATH ATTRIBUTABLE TO NOSOCOMIAL PNEUMONIA IN MATCHED CASE-CONTROL STUDIES

<table>
<thead>
<tr>
<th>First Author</th>
<th>Ref.</th>
<th>Diagnostic Criteria</th>
<th>Type of Patient</th>
<th>No. of Cases</th>
<th>Crude Mortality</th>
<th>Attributable Mortality (%)</th>
<th>Risk Ratio</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Craig</td>
<td>83</td>
<td>Clinical</td>
<td>ICU</td>
<td>54</td>
<td>20.4</td>
<td>14.8</td>
<td>3.6</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Fagoni</td>
<td>81</td>
<td>PSB + BAL</td>
<td>Ventilated</td>
<td>48</td>
<td>54.2</td>
<td>27.1</td>
<td>2.0</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Cunnion</td>
<td>84</td>
<td>Clinical</td>
<td>Surgical</td>
<td>20</td>
<td>55.0</td>
<td>50.0</td>
<td>23.2*</td>
<td>< 0.002</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ICU</td>
<td>20</td>
<td>55.0</td>
<td>47.5</td>
<td>15.1*</td>
<td>< 0.002</td>
</tr>
<tr>
<td>Baker</td>
<td>44</td>
<td>PSB/BAL</td>
<td>Medical</td>
<td>62</td>
<td>24.0</td>
<td>0</td>
<td>1</td>
<td>NS</td>
</tr>
<tr>
<td>Papazian</td>
<td>85</td>
<td>PSB</td>
<td>ICU</td>
<td>85</td>
<td>40.0</td>
<td>1.2</td>
<td>1.3</td>
<td>NS</td>
</tr>
<tr>
<td>Heyland</td>
<td>86</td>
<td>PSB/BAL</td>
<td>Trauma</td>
<td>177</td>
<td>23.7</td>
<td>5.8</td>
<td>1.3</td>
<td>NS</td>
</tr>
<tr>
<td>Bercault</td>
<td>87</td>
<td>PSB</td>
<td>Ventilated</td>
<td>135</td>
<td>41.0</td>
<td>27.0</td>
<td>2.7*</td>
<td>0.03</td>
</tr>
</tbody>
</table>

Definition of abbreviations: RAI = bronchoalveolar lavage; ICU = intensive care unit; NS = not significant; PSB = protected specimen brush.

* Odds ratio.

Am J Resp Crit Care Med 2002: 165;867-903
INDIAN SCENARIO

<table>
<thead>
<tr>
<th>Study</th>
<th>Yr</th>
<th>Study design</th>
<th>Dur</th>
<th>Diagnostic criteria</th>
<th>Type of pt</th>
<th>CFU/ml</th>
<th>N</th>
<th>Incidence of HAP / VAP(%)</th>
<th>Mortality (%) (Attributable mortality)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SGP GI, Lucknow</td>
<td>03</td>
<td>Prospective</td>
<td>1 yr</td>
<td>Clinical +PSB +BAL</td>
<td>SICU</td>
<td>>10³</td>
<td>241</td>
<td>53.9</td>
<td>47.3 (72.3)</td>
</tr>
<tr>
<td>Escort, Delhi</td>
<td>03</td>
<td>Prospective</td>
<td>3 m</td>
<td>Clinical</td>
<td>CSICU</td>
<td>-</td>
<td>952</td>
<td>2.6</td>
<td>16</td>
</tr>
<tr>
<td>GMC, Mumbai</td>
<td>04</td>
<td>Prospective</td>
<td>1 yr</td>
<td>Clinical</td>
<td>CCU</td>
<td>-</td>
<td>51</td>
<td>47</td>
<td>37</td>
</tr>
<tr>
<td>AIIMS</td>
<td>05</td>
<td>Retrospective</td>
<td>1 yr</td>
<td>Protected BAL</td>
<td>ICU</td>
<td>>10⁴</td>
<td>478</td>
<td>35.77</td>
<td>-</td>
</tr>
<tr>
<td>KMC, Manipal</td>
<td>07</td>
<td>Prospective</td>
<td>9 m</td>
<td>Clinical ETA*</td>
<td>MICU</td>
<td>>10⁵</td>
<td>97</td>
<td>45.4</td>
<td>-</td>
</tr>
<tr>
<td>Pgi Chandigarh</td>
<td>06</td>
<td>Prospective</td>
<td>1.5 yr</td>
<td>Clinical + ETA</td>
<td>ICU</td>
<td>>10⁵</td>
<td>201</td>
<td>23%</td>
<td>-</td>
</tr>
</tbody>
</table>

*Endotracheal aspirate

*Indian J Med Res 2003:118;229-235
IJCCM 2004
*Indian J Med Res 2005:121;63-64
Ann Thorac Med 2007;2:52-55*
HOST
Impaired immune function
Comorbid illness
Prior surgery/antibiotics

PATHOGEN
- Inoculum
- Virulent strain (MDR)

ENVIRONMENT
Infected air, water, fomites, instruments
Cross-contamination

PATHOGENESIS
NOSOCOMIAL PNEUMONIA
RISK FACTORS

<table>
<thead>
<tr>
<th>Host Factors</th>
<th>Intervention Factors</th>
<th>Infection Control related factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age ≥ 60 yrs</td>
<td>Endotracheal intubation</td>
<td>Cross contamination</td>
</tr>
<tr>
<td>ARDS</td>
<td>H₂ blockers ± antacids</td>
<td></td>
</tr>
<tr>
<td>COPD, pulmonary disease</td>
<td>Paralytic agents, continuous iv sedation</td>
<td></td>
</tr>
<tr>
<td>Coma / impaired consciousness</td>
<td>ICP monitoring</td>
<td></td>
</tr>
<tr>
<td>Burns, trauma</td>
<td>Mechanical ventilation > 2days</td>
<td></td>
</tr>
<tr>
<td>Organ failure</td>
<td>PEEP</td>
<td></td>
</tr>
<tr>
<td>Severity of illness</td>
<td>Frequent ventilator circuit changes</td>
<td></td>
</tr>
<tr>
<td>Large-volume gastric aspiration</td>
<td>Reintubation</td>
<td></td>
</tr>
<tr>
<td>Serum albumin < 2.2g/dl</td>
<td>Nasogastric tube</td>
<td></td>
</tr>
<tr>
<td>Gastric colonization & pH</td>
<td>Supine head position</td>
<td></td>
</tr>
<tr>
<td>Upper respiratory tract colonization</td>
<td>Transport out of the ICU</td>
<td></td>
</tr>
<tr>
<td>Sinusitis</td>
<td>Prior antibiotic or no antibiotic therapy</td>
<td></td>
</tr>
</tbody>
</table>

Am J Respir Crit Care Med 2002:165:867-903
Host factors

Prior antibiotic therapy

Invasive devices

Medications altering gastric emptying and pH

Colonization of aerodigestive tract

Contaminated water source, medication solutions, respiratory-therapy solutions

Aspiration ET tube (biofilm)

Inhalation

Transthoracic infection, Primary bacteremia, Possible GI translocation

Secondary bacteremia

SIRS

Non pulmonary organ dysfunction

Bronchiolitis

Focal or multifocal bronchopneumonia

Confluent bronchopneumonia

Lung abscess

Host systemic & LRT defense mechanism

NEJM 1999;340:627-634
MICROBIOLOGY

- Different spectrum than CAP
- Different in different regions
- Organisms depend on:
 - Time of onset (Early Vs Late)
 - Severity of illness
 - Presence of Risk factors

<table>
<thead>
<tr>
<th>Severe NP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Admission to ICU</td>
</tr>
<tr>
<td>Respiratory failure (need of ventilator)</td>
</tr>
<tr>
<td>Rapid CxR progression</td>
</tr>
<tr>
<td>Evidence of sepsis or end organ dysfunction</td>
</tr>
</tbody>
</table>
MICROBIOLOGY

<table>
<thead>
<tr>
<th>Mild/Moderate HAP with anytime onset, no risk factors or early onset severe HAP</th>
<th>Early Severe HAP with risk Factors or late onset severe HAP</th>
</tr>
</thead>
</table>
| ➢ **Enteric GNB**
 Enterobactor species
 E.coli
 Klebsiella species
 Proteus species
 Serratia marcescens
 H. influenzae
 MSSA
 S. pneumoniae | **Pseudomonas aeruginosa**
 Acinetobactor species
 MRSA |

Am J Respir Crit Care Med 1995;153:1711-1725
Risk factors

<table>
<thead>
<tr>
<th>Pathogens</th>
<th>Risk factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anaerobes</td>
<td>Abdominal surgery, aspiration, foreign body</td>
</tr>
<tr>
<td>S.aureus</td>
<td>Coma, head trauma, DM, renal failure, iv drug abuse, influenza</td>
</tr>
<tr>
<td>Legionella</td>
<td>Corticosteroid, malignancy, neutropenia, chemotherapy, renal failure,</td>
</tr>
<tr>
<td></td>
<td>contaminated coolers/towers</td>
</tr>
<tr>
<td>Pseudomonas</td>
<td>Long ICU stay, corticosteroids, underlying lung disease, prior abx use</td>
</tr>
<tr>
<td>Aspergillus/Candida</td>
<td>Immunocompromised pts, neutropenia, organ transplant</td>
</tr>
<tr>
<td>Viruses</td>
<td>Seasonal (Influenza, parainfluenza, adenovirus, RSV)</td>
</tr>
</tbody>
</table>
% incidence of organisms causing VAP in US & INDIA (tertiary care centre)

<table>
<thead>
<tr>
<th>Organism</th>
<th>USA</th>
<th>AIIMS</th>
<th>PGI</th>
</tr>
</thead>
<tbody>
<tr>
<td>P. aeruginosa</td>
<td>24.4</td>
<td>40.1</td>
<td>32</td>
</tr>
<tr>
<td>Acinetobactor spp</td>
<td>7.9</td>
<td>44.8</td>
<td>44</td>
</tr>
<tr>
<td>Enterobacteriaceae*</td>
<td>14.1</td>
<td>14</td>
<td>6</td>
</tr>
<tr>
<td>H. influenzae</td>
<td>9.8</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>S. maltophilia</td>
<td>1.7</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MSSA+ MRSA</td>
<td>20.4</td>
<td>1.04</td>
<td>10</td>
</tr>
<tr>
<td>Streptococci</td>
<td>8.0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>S. pneumoniae</td>
<td>4.1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Neisseria</td>
<td>2.6</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Arch Bronconeumol 2005;41:439–456
% incidence of organisms causing VAP at RICU, PGI (Oct09-Jan10)
Emergence of selected MDR bacteria

<table>
<thead>
<tr>
<th>Pathogen</th>
<th>Mechanism of resistance</th>
<th>Resistant Antibiotics</th>
</tr>
</thead>
<tbody>
<tr>
<td>P. aeruginosa</td>
<td>Multiple efflux pumps, Decreased expression of OprD*, Plasmid mediated metallobeta-lactamase</td>
<td>Piperacillin, ceftazidime, cefepime, carbapenem, aminoglycosides, fluoroquinolones Imipenem (but not beta-lactams) Carbapenems, ceftazidime, cephalosporins</td>
</tr>
<tr>
<td>Enteric GNB (Klebsiella, E.coli, Enterobacter)</td>
<td>Extended beta-lactamases, AmpC-type enzyme</td>
<td>Cephalosporins, aztreonam, aminoglycoside Above + carbapenems</td>
</tr>
<tr>
<td>Acinetobactor</td>
<td>IMP-type metalloenzymes, OXA-type carbapenemase</td>
<td>Carbapenems</td>
</tr>
<tr>
<td>MRSA</td>
<td>meca coded Penicillin binding proteins</td>
<td>Beta-lactams</td>
</tr>
</tbody>
</table>

Outer membrane porin channel
Risk factors for MDR pathogens

1. Antimicrobial therapy in preceding 90 days
2. Current hospitalization of ≥ 5 days
3. High frequency of antibiotic resistance in the community or in the specific hospital unit
4. Presence of risk factors for HCAP:
 ✓ Hospitalization for ≥ 2 days in the preceding 90 days
 ✓ Residence in a nursing home or extended-care facility
 ✓ Home infusion therapy (including antibiotics)
 ✓ Chronic dialysis within 30 days
 ✓ Home wound care
 ✓ Family member with MDR pathogen
5. Immunosuppressive disease and/or therapy
6. Acinetobacter baumannii, pseudomonas aeruginosa
7. HA-MRSA, CA-MRSA

DIAGNOSIS OF HAP

Clinical + Chest X ray + Microbiology

- New onset fever
- Purulent expectoration
- Tachycardia
- Tachypnoea
- Leukocytosis / Leukopenia
- Need of higher FiO₂

Clinical diagnosis
- high sensitivity, low specificity
- empiric treatment

Microbiology
- to identify etiology
- de-escalate therapy
- decide duration of therapy
CXR

- AP films difficult to interpret in ICU
 - 26% of infiltrates by CT scan missed by CXR
 - If underlying CXR abnormal (e.g. ARDS), locating new process difficult

- Sensitivity
 - Air bronchogram 58-83%
 - New/worsening infiltrate 50-78%

- Many pneumonia mimics

<table>
<thead>
<tr>
<th>Aspiration</th>
<th>Alveolar hemorrhage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atelectasis</td>
<td>Pulmonary edema</td>
</tr>
<tr>
<td>ARDS</td>
<td>Pleural effusion</td>
</tr>
<tr>
<td>Pulmonary infarcts</td>
<td>BOOP</td>
</tr>
</tbody>
</table>
METHODS

Proximal Airways
- Sputum
- Tracheal aspirate

Simple
- No expertise required
- Non-quantitative culture
 - high sensitivity
 - low specificity
- NPV 93% for ETA <10^3 CFU/ml

Distal Airways

Non bronchoscopic
- PSB
- BAL
- Protected BAL

ADV:
- Non invasive
- Low cost
- No expertise required
- Less complication

DISADV:
- Blind procedure
- Sampling error

Bronchoscopic
- PSB
- BAL
- Protected BAL

ADV:
- Proper sampling from desired bronchus
- Less contamination

DISADV
- Hypoxia
- Expertise
- Expensive
Sputum Stain

• Only 33% of pts colonized ⇨ HAP

• Recovery of pathogen from tracheal secretion not diagnostic for pneumonia (exception: Legionella)

• Gram stain
 – If no bacteria, <5% probability HAP
 – If >10/oil immersion field - 50% HAP

• DDx purulent sputum:
 – sinusitis, tracheobronchitis, aspiration

BAL fluid stain

• Cell Counts
 < 50% neutrophils has 100% NPV

• Gram stain
 Presence of bacteria LR*
 Blind Bronchial aspirate 2.1
 Mini BAL 5.3
 BAL 18

Likelihood ratio
Sensitivity & Specificity

<table>
<thead>
<tr>
<th>Methods</th>
<th>Quantitative culture</th>
<th>Sensitivity</th>
<th>Specificity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Endotracheal aspirate</td>
<td>≥ 10⁵ CFU/ml</td>
<td>76±9%</td>
<td>75±28%</td>
</tr>
<tr>
<td>Bronchoscopy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BAL</td>
<td>10⁴-10⁵ CFU/ml</td>
<td>73±18%</td>
<td>82±19%</td>
</tr>
<tr>
<td>PSB</td>
<td>≥ 10³ CFU/ml</td>
<td>66±19%</td>
<td>90±15%</td>
</tr>
<tr>
<td>Blind Bronchial suction</td>
<td>≥ 10⁴ CFU/ml</td>
<td>74-97%</td>
<td>74-100%</td>
</tr>
<tr>
<td>Blind mini BAL</td>
<td>≥ 10⁴ CFU/ml</td>
<td>63-100%</td>
<td>66-96%</td>
</tr>
<tr>
<td>Blind PSB</td>
<td>≥ 10³ CFU/ml</td>
<td>58-86%</td>
<td>71-100%</td>
</tr>
</tbody>
</table>

Am J Respir Crit Care Med 2005;171:388–416
BRONCHOSCOPY

- Quantitative cultures important
- Positive culture: 10^3 or 10^4 CFU/ml
- Prior antibiotic exposure often causes false negatives
- Invasive lower airway sampling consistently results in changes to antibiotic management among patients with suspected VAP. Despite these changes, however, regular use of bronchoscopy for the diagnosis of VAP does not alter mortality since it does not directly affect the initial antibiotic prescription.

 Crit Care Med 2005;33:46–53

- Culture results below threshold may represent early disease
 - 30% of patients with $>10^2$ but $<10^3$ CFU eventually developed HAP
 - Improves decision making
 - De-escalalation of antibiotics
 - Stopping antibiotics
 - Associated with lower mortality rate

 Chest 1999;115:1076
Modified Clinical Pulmonary Infection Scale (CPIS)

<table>
<thead>
<tr>
<th>CPIS Point</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tracheal secretions</td>
<td>Rare</td>
<td>Abundant</td>
<td>Abundant + Purulent</td>
</tr>
<tr>
<td>CxR infiltrates</td>
<td>No infiltrate</td>
<td>Diffuse</td>
<td>Localized</td>
</tr>
<tr>
<td>Temp, °C</td>
<td>≥36.5 and ≤38.4</td>
<td>≥38.5 and ≤38.9</td>
<td>≥39 or ≤36</td>
</tr>
<tr>
<td>Leukocytes count, /mm³</td>
<td>≥4000 to ≤11000</td>
<td><4000 and >11000</td>
<td><4000 and >11000 + band forms ≥ 500</td>
</tr>
<tr>
<td>PaO2/Fio2,</td>
<td>>240 or ARDS</td>
<td></td>
<td>≤240 and no evidence of ARDS</td>
</tr>
<tr>
<td>Microbiology (Gram stain & culture)</td>
<td>No growth or <1+</td>
<td>>1+ growth with same pathogen stained</td>
<td>>1+ growth with same pathogen stained > 1+</td>
</tr>
</tbody>
</table>

A CPIS score > 6 → good correlation with pneumonia diagnosed bronchoscopically or non-bronchoscopically
Sensitivity 77% & Specificity 44%
Modified CPIS score of ≤6 → good prediction to discontinue antibiotic therapy after 3 days in pts with low suspicion for pneumonia and who are otherwise clinically improving
Biomarkers to diagnose VAP

- sTREM-1
 - Triggering receptor expressed on myeloid cells
 - Neutrophils express TREM-1 on exposure to infected tissue
 - Gibot et al studied soluble TREM-1 in BAL fluid by rapid immunoblot assay in 148 mechanically ventilated pts with suspected pneumonia
 - Sensitivity 98% & specificity 90%
 - *NEJM 2004;350:451–8*
 - Nonspecific to bacterial or fungal pneumonia

- Procalcitonin

- C-Reactive Protein
APPROPRIATE INITIAL EMPIRIC ANTIBIOTIC TREATMENT

- INAPPROPRIATE INITIAL EMPIRIC ANTIBIOTIC TREATMENT
- De-escalation
- Assessment for risk for MDR organisms
- Colonization pressure → the higher the MRSA colonization rate in ICU, the higher the MRSA acquisition risk by other patients.

Infect Control Hosp Epidemiol 2000;21:718-23.
Empiric antibiotic therapy

- HAP, VAP or HCAP suspected (All Disease Severity)

- Late onset or risk factors for MDR pathogens
 - No
 - Limited Spectrum Antibiotic therapy
 - Shorter duration
 - Yes
 - Broad Spectrum Antibiotic therapy for MDR Pathogens

Suspected VAP

Microbiological evaluation

- Gm + stain if MRSA
- Gm – stain if acinetobacter
- Gm – stain if pseudomonas

Start anti MRSA coverage
Start carbapenam/colistin
Start anti pseudomonal agents

Emperic antibiotics based on risk factors
<table>
<thead>
<tr>
<th>Patient category</th>
<th>Antibiotic Treatment in Pt with VAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>No risk for MDR organisms</td>
<td>Ceftriaxone</td>
</tr>
<tr>
<td></td>
<td>Levofloxacin, moxifloxacin, cipro</td>
</tr>
<tr>
<td></td>
<td>Ampicillin/sulbactam</td>
</tr>
<tr>
<td></td>
<td>Ertapenem</td>
</tr>
<tr>
<td></td>
<td>Amoxicillin-Clavulanate</td>
</tr>
<tr>
<td>At risk for: Pseudomonas aeruginosa</td>
<td>Initial emperic antibiotic treatment</td>
</tr>
<tr>
<td></td>
<td>Imipenem/cilastatin: 2 hr infusion</td>
</tr>
<tr>
<td></td>
<td>Meropenem: 3 hr infusion</td>
</tr>
<tr>
<td></td>
<td>Doripenem: 4 hr infusion</td>
</tr>
<tr>
<td></td>
<td>Piperacillin- tazobactum: 4 hr infusion</td>
</tr>
<tr>
<td></td>
<td>Ceftazidime/cefipime: continuous infusion combination with ciprofloxacin</td>
</tr>
<tr>
<td>MRSA</td>
<td>Linezolid</td>
</tr>
<tr>
<td></td>
<td>Vancomycin: continuous infusion to trough levels of 15-20 microgm/ml</td>
</tr>
<tr>
<td>Acinetobacter baumannii</td>
<td>Carbapenem</td>
</tr>
<tr>
<td></td>
<td>Sulbactam</td>
</tr>
<tr>
<td></td>
<td>Colistin</td>
</tr>
<tr>
<td>Previously treated with</td>
<td>recommendation</td>
</tr>
<tr>
<td>Beta lactam</td>
<td>Carbapenem</td>
</tr>
<tr>
<td>Ciprofloxacin</td>
<td>Avoid imipenem</td>
</tr>
<tr>
<td>Carbapenam</td>
<td>Piperacillin- tazobactam</td>
</tr>
</tbody>
</table>
Management strategies summary

HAP, VAP or HCAP suspected

Obtain lower respiratory tract (LRT) sample for culture (quantitative or semi-quantitative) and microscopy

Unless there is both a low clinical suspicion for pneumonia and negative microscopy of LRT sample, begin empiric antimicrobial therapy using an algorithm and local microbiological data

Days 2 and 3: check cultures and assess clinical response: (temperature, WBC, chest X-ray, oxygenation, purulent sputum, haemodynamic changes and organ function)

Clinical improvement at 48–72 hours

Cultures –
Search for other pathogens, complications, other diagnoses or other sites of infection

Cultures +
Adjust antibiotic therapy, search for other pathogens, complications, other diagnosis or other sites of infection

Cultures –
Consider stopping antibiotics

Cultures +
De-escalate antibiotics, if possible, treat selected patients for 7–8 days and re-assess

Am J Respir Crit Care Med 2005;171:388-416
Pharmacokinetics-Pharmacodynamics considerations

• HOST FACTORS sepsis → third spacing
 renal failure
 shock → fluid therapy
 hypoalbuminemia

• ANTIBIOTICS FACTOR
 time dependent (infusion) → beta lactams, carbapenams & glycopeptides
 concentration dependent (OD) → FQS, AG, macrolides
CURRENT ATS-IDSA RECOMMENDATIONS FOR ANTIBIOTIC THERAPY

- Use short duration (5 days) of aminoglycoside combined with a β-lactam to treat *P. aeruginosa* pneumonia (III)

- HCAP treated for MDR pathogen regardless of onset of pneumonia (II)

- De-escalate on results of LRT cultures & patient’s clinical response

- Shorter duration of antibiotic therapy (7–8 days) for uncomplicated HAP(I)

- If ESBL+ Enterobacteriaceae isolated – avoid monotherapy with 3rd gen. cephalosporins; use carbapenems (II)

- Aerosolised antibiotics (tobramycin, polymyxin) may have value as adjunctive therapy (II)

- Linezolid can be used as alternative to vancomycin for MRSA VAP (II)

Am J Respir Crit Care Med 2005;171:388–416
BSAC RECOMMENDATIONS FOR ANTIBIOTIC THERAPY

• Duration for empirical therapy in patients who have responded should no longer than 8 days.
• Antimicrobial monotherapy should be used wherever possible for the management of bacterial HAP.

RESPONSE TO THERAPY

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Variables</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical</td>
<td>Temperature</td>
<td>Improvement</td>
</tr>
<tr>
<td></td>
<td>Total leukocyte count</td>
<td>Resolution</td>
</tr>
<tr>
<td></td>
<td>PaO₂/FiO₂</td>
<td>Delayed Resolution</td>
</tr>
<tr>
<td></td>
<td>CXR</td>
<td>Relapse</td>
</tr>
<tr>
<td></td>
<td>"CPIS"</td>
<td>Failure</td>
</tr>
<tr>
<td>Microbiologic</td>
<td>Serial tracheal aspirate/BAL culture</td>
<td>Eradication</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Superinfection</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Recurrent infection</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Persistence</td>
</tr>
</tbody>
</table>
Assessment of Nonresponders

Wrong Organism
- Drug-resistant Pathogen (bacteria, mycobacteria, virus, fungus)
- Inadequate Antimicrobial therapy

Wrong Diagnosis
- Atelectasis
- Pulmonary embolus
- ARDS
- CHF
- Pulmonary hemorrhage
- Neoplasm

Complications
- Lung abscess/Empyema
- Clostridium difficile colitis
- Occult infection
- Drug fever
- Fever
Evidence-based VAP Prevention Program

Institutional Support → Multidisciplinary Team

Financial Incentives → Regulatory Measures

Translation of Prevention Strategies into Hospital Practice

Assess Outcomes & Monitor Compliance

Decreased VAP Morbidity & Mortality
Recommended Strategies

<table>
<thead>
<tr>
<th>Risk Factors</th>
<th>Intervention/strategy</th>
<th>Evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infection control measures</td>
<td>Staff education; staffing levels</td>
<td>Level I</td>
</tr>
<tr>
<td></td>
<td>Hand washing</td>
<td>Level I</td>
</tr>
<tr>
<td></td>
<td>Surveillance of ICU infection</td>
<td>Level II</td>
</tr>
<tr>
<td>Intubation & mechanical ventilation</td>
<td>Avoid intubation/reintubation</td>
<td>Level I</td>
</tr>
<tr>
<td></td>
<td>NIV use (selected pts)</td>
<td>Level I</td>
</tr>
<tr>
<td></td>
<td>Orotracheal intubation & orogastric tubes preferred</td>
<td>Level II</td>
</tr>
<tr>
<td></td>
<td>Continuous aspiration of subglottic secretions</td>
<td>Level I</td>
</tr>
<tr>
<td></td>
<td>ET tube cuff pressure ≥ 20 cm H_2O</td>
<td>Level II</td>
</tr>
<tr>
<td></td>
<td>No change of ventilatory circuit</td>
<td>Level II</td>
</tr>
<tr>
<td></td>
<td>Sedation vacation</td>
<td>Level II</td>
</tr>
<tr>
<td>Stress bleeding prophylaxis</td>
<td>Increases HAP/VAP (Sucralfate $<$ H2-blocker or PPIs)</td>
<td>Level I</td>
</tr>
</tbody>
</table>

Recommended Strategies

<table>
<thead>
<tr>
<th>Risk Factors</th>
<th>Intervention/strategy</th>
<th>Evidence</th>
</tr>
</thead>
</table>
| Aspiration, body position & enteral feeding | Semirecumbent position (30°-45°)
Enteral nutrition preferred over parenteral nutrition | Level I
Level I |
| Modulation of colonization | Oral care with chlorhexidine (selected pts) [more data reqd for routine use]
Selective Decontamination of Digestive tract has reduced VAP, but concern about MDR pathogen
Prophylactic antibiotic for 24 hrs at the time of emergent intubation but routine use not advocated at present | Level I
Level I
Level I |
| Transfusion | Leukocyte depleted RBCs reduce VAP | Level I |
| Hyperglycemia | Intensive insulin therapy (RBS <180mg/dl) | Level II |
PRONOVOOST PROTOCOAL

- Hand wash with soap before procedure
- Skin preparation with chlorhexidine
- Full body drape
- Avoid femoral line
- Remove unnecessary lines
Closed versus open suctioning

- No one superior
- Safety of health care worker better in closed suction
- the closed-tracheal suction system did not reduce VAP incidence, even for exogenous pneumonia.

Crit Care Med 2005; 33:115–119
Antibiotic Rotation/Cycling

• Altering antibiotic pattern/class leads to decline in resistance

• A class of antibiotic or specific antibiotic is stopped for a defined period and then re-introduced

• A 4 year study on 3455 ICU patients:
 Rotation of antibiotics and Restriction of Ceftazidime and ciprofloxacin led to decrease in incidence of VAP from 22 to 16% \(p = <01 \)

Gruson. Am J Respir Crit Care Med 2000;162;837:43
RECOMMENDATIONS FOR HEALTH CARE WORKER

• Data from two cohort studies showed that education programs are effective in reducing the incidence of VAP by 51% and 56%, respectively.

• PPE

• Pneumococcal vaccine

“Ventilator Bundle”

- Four components:
 1. Elevation of the head of the bed to between 30 and 45 degrees,
 2. Daily “sedation vacation”
 3. Peptic ulcer disease (PUD) prophylaxis
Nosocomial Pneumonias are frequent & associated with excess mortality → initiate prompt appropriate & adequate therapy

Pathogens distinct from one hospital to another, specific sites within the hospital, and from one time period to another

Either semi-quantitative or quantitative culture data → appropriate for management of HAP / VAP / HCAP

Avoid overuse of antibiotics by focusing on accurate diagnosis, tailoring therapy to recognized pathogen and shortening duration of therapy to the minimum effective period

Apply prevention strategies aimed at modifiable risk factors